
Linux Authentication - Interactive and Service account (M2M)
authentication without Passwords, SSH Keys and Secrets

LINUX
AUTHENTICATION
DESIGN
SOLUTION BRIEF

Overview
This document provides an overview of the M2M Linux authentication
flows in AuthNull using Active directory users. This method does not
require passwords, or SSH keys and entirely uses a Passwordless
credential to deliver Machine to machine / service account
authentication.

Use case #1: Interactive Passwordless
authentication
Logical architecture and flow

Steps What happens
Step #1 User attempts to connect to target machine using SSH

Ssh asif@1.1.1.1

Step #2 Custom NSS module does a directory lookup to verify the
user identity on an LDAP directory (LDAP / TCP). When
successful this moves to step #3.

If not successful – authentication will be denied.

Step #3 Custom PAM module initiates Passwordless authentication
from wallet

Step #4 AuthNull server gets called to verify interactive
authentication policy from the mapping db.

mailto:asif@1.1.1.1

Step #5 Mapping DB is used to look up authentication policy and
verify
- Does this user actually have access rights? Does

an interactive policy exist?
- Lookup Address of blockchain ledger.

Step #6 User / Owner of account gets a push notification on

wallet

- User submits presentation submission (credential

signed by private key) if he accepts the
authentication request, or deny the request if
they think someone else is accessing the account.

- This PR can be verified using users public key

- Additionally, it is converted to a hash with

current salt and random string for the day.

- This can be considered as user Hash
Step #6 The blockchain ledger hash is looked up from the address

from Mapping DB for this user authentication policy.

This hash is compared to the computed hash retrieved
from the wallet.

If both the hashes match, it further verifies that the
user has the correct credentials using blockchain

Step #7 User is able to authenticate successfully.

Use case #2: M2M authentication
Logical architecture and flow

Steps What happens
Pre-
requisite

Admin (who owns m2m credential) first delegates
credentials to a blockchain ledger and writes the hash
in mapping db, along with address of ledger. Each target
authentication machine and its unique IP also have a
machine key, and a policy stored in the mapping db.

Policy exists defining the authentication as a m2m
policy.

Daily hash on mapping db (hash1)
Hash on Ethereum chain (hash2)

Step #1 Script executes SSH M2M authentication from Source
server to Destination server.

Step #2 Custom NSS module does a directory lookup to verify the
user identity on an LDAP directory (LDAP / TCP). When
successful this moves to step #3.

If not successful – authentication will be denied

Step #3 Custom PAM module initiates auth for passwordless auth

Step #4 AuthNull server API is called to verify authentication

-

Step #5 AuthNull verifies from Mapping db

It is verified that this is a M2M policy from the
mapping DB.
- Does this user have access rights? Does a policy

exist.
- Address of blockchain ledger.

- Hash for verification (original hash)

Step #6 The blockchain ledger hash is looked up from the address
from Mapping DB for this user authentication policy.

This hash is compared to the computed hash retrieved
from the db.

If both the hashes match, it further verifies that the
m2m authentication is correct has the correct
credentials using blockchain

Step #7 User is able to authenticate successfully.

Use case #3: M2M authentication attempted
through a privileged interactive user
authentication
Logical architecture and flow

Steps What happens
Prerequisite Admin (who owns m2m credential) first delegates

credentials to a blockchain ledger and writes the hash
in mapping db, along with address of ledger. Each
target authentication machine and its unique IP also
have a machine key, and a policy stored in the mapping
db.

Step #1 Privileged User initiates SSH connection to M2M source
machine

Step #2 User initiates SSH authentication from M2M Source
Server to M2M Destination Server using a m2m policy
user example postgres

Let’s assume current logon user is admin

Admin @ 1.1.1.1 $> ssh postgres@2.2.2.2

mailto:postgres@2.2.2.2

Step #3 Agent uses Ptrace on source machine to track current
session commands and collects the following
information:
a. interactive user logon name [admin]
b. source ip 1.1.1.1
c. target username [postgres]
d. target machine ip 2.2.2.2
e. source port that is used for the outbound
connection.

This is stored in mapping db as a session and a unique
hash is generated representing this session.

Step #4 Custom NSS module does a directory lookup to verify the
user identity on an LDAP directory (LDAP / TCP). When
successful this moves to next step.

If not successful – authentication will be denied.

Step #5 Custom PAM module initiates auth for passwordless auth
for SSH.

Step #6 Ptrace to track current incoming SSHd sessions and
collects the following information:

a. incoming session’s interactive user logon name
b. source ip
c. target username
d. target machine name
e. source port

Each source port is unique for each session, and
therefore can be used to uniquely identify each
session.

The source ip and source port is identified through
pam_exec which is also used to ensure that a given
session is looked up from the mapping db, to find if
there’s a unique session hash. If a session hash
exists, and this has an interactive user

Step #7 AuthNull server is called to verify the user
authentication.

1. AuthNull server checks to find if there’s an M2M
policy in Mapping db – yes. This is a M2M policy
and a hash, with a address of the blockchain.

2. AuthNull checks Mapping db for active interactive
sessions from source machine The mapping is done
using source ip, source remote port, source
username, and these values are typically also
found on the destination machine using pam_exec,
during the course of the session.

3. If this mapping session db has a session hash,
along with an interactive user then this session
is considered an interactive user.

4. AuthNull finds an active user logged on who
initiated this authentication and reverts to
evaluating this request as an interactive
authentication.

Step #8 Owner of the wallet is notified with a push
notification to accept or deny the authentication
request.

If the owner of the user denies the request,
authentication will fail.

Step #7 The blockchain ledger hash is looked up from the
address from Mapping DB for this user authentication
policy.

This hash is compared to the computed hash retrieved
from the db.

If both the hashes match, it further verifies that the
m2m authentication is correct has the correct
credentials using blockchain

Step #8 User is able to authenticate successfully.

Key problem statements

How do we ensure we convert non interactive authentication when
initiated by an interactive user?

How do we map user sessions from source machine (M1) to destination
Machine (M2) and ensure that a privileged interactive user is not
leveraging M2M policy and bypassing security controls

Solution approaches to solving the user mapping
problem?

1. Map user sessions from source M1 and M2 using session level
variables and ensuring that interactive user sessions are
identified

2. Block authentication on source M1 when interactive authentication
is identified

3. Use BPF to trace inbound SSH connections and block interactive
authentications

4. Generate a session key and pass it as arguments using xargs
within a SSH session

AuthNull uses solution approach #1 and #2 for identifying and mapping
user sessions from source machine (M1) and destination machine (M2)

Approach #1 Map user sessions from source M1
and M2 using session level variables and
ensuring that interactive user sessions are
identified

Steps:

1. The following information is collected at the time of the session
on the source machine using ptrace for every sshd outbound
session

A unique key is generated for each session. When the session is an
interactive user, the source privileged i.e. the interactive user is
also stored as a part of the session db.

2. In the destination machine – the following information is
collected on a per session basis, especially remote_ip and
remote_port using pam_exec.
Since pam_exec is on a per session basis, the same is used to
trigger validation of whether the user is actually an interactive
user by mapping the collected information from the db.

For example: From the above / below collected in the mapping
table, a connection with remote port 5117, for service account
AuthNulldb from M1 to M2 has a unique privileged user asif who is
attempting interactive authentication.

3. Given such a mapping found for interactive user “asif” attempting
to connect to “AuthNulldb” – AuthNull finds from the mapping
table that this is actually a service account user belonging to
wallet muthu@AuthNull.com

4. Therefore Muthu@AuthNull.com will get a notification for this
attempted interactive authentication against a service account
(m2m) user policy.

5. If Muthu@AuthNull.com allows the interaction on wallet, the
interactive user authentication will proceed successfully.

6. If Muthu@AuthNull.com denies the authentication on the wallet,
the interactive authentication for service account user
AuthNulldb will fail.

Approach #2: Optionally AuthNull also provides a blocking call on source

machine M1 to ensure that wallet owner gets a notification

This works as follows:

1. The following information is collected at the time of the session
on the source machine using ptrace for every sshd outbound
session

2. Since the source machine already knows that the attempted
authentication is against AuthNulldb service account user whereas
this user is a m2m user – AuthNull looks up the policies for the
account “AuthNulldb” for the associated machine “m2”

3. When AuthNull finds “AuthNulldb” belongs to muthu@AuthNull.com –
it can initiate a blocking approval request to the owner
muthu@AuthNull.com to whether to allow /deny such an
authentication request.

mailto:muthu@authnull.com
mailto:Muthu@authnull.com
mailto:Muthu@authnull.com
mailto:Muthu@authnull.com

4. Subsequently the M2 machine can attempt to re-verify the session
and re-initiate authentication against the owner of the wallet as
described in approach #1

Advantages of both the approaches:

1. No custom ssh code is required
2. No need of passing session specific variables via SSH / xargs
3. No need of additional AuthNull control plane to Endpoints using

TCP
4. No need of re-verification of machine identity (as machine

identity is tied to the user

Use case #4: Root bypass

Step #1 User attempts to logon as root

Step #2 AuthNull Bypasses root authentication and enables logon

with a root password (no Passwordless authentication
required).

	Linux Authentication - Interactive and Service account (M2M) authentication without Passwords, SSH Keys and Secrets
	Overview
	Use case #1: Interactive Passwordless authentication
	Use case #2: M2M authentication
	Use case #3: M2M authentication attempted through a privileged interactive user authentication
	Key problem statements
	Solution approaches to solving the user mapping problem?
	Approach #1 Map user sessions from source M1 and M2 using session level variables and ensuring that interactive user sessions are identified
	Approach #2: Optionally AuthNull also provides a blocking call on source machine M1 to ensure that wallet owner gets a notification

	Advantages of both the approaches:
	Use case #4: Root bypass

